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We present a framework for efficiently solving Approximate Traveling Salesman 
Problem (Approximate TSP) for Quantum Computing Models. Existing 
representations of TSP introduce extra states which do not correspond to any 
permutation. We present an efficient and intuitive encoding for TSP in quantum 
computing paradigm. Using this representation and assuming a Gaussian distribution 
on tour-lengths, we give an algorithm to solve Approximate TSP (Euclidean) within 
BQP resource bounds. Generalizing this strategy for any distribution, we present an 
oracle based Quantum Algorithm to solve Approximate TSP. We present a realization 
of the oracle in the quantum counterpart of PP.   
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Introduction—Quadratic speed up achieved by Grover’s1 search algorithm for 
unstructured database is optimal2, ,3 4.  Direct attempts to solve NP-complete problems 
are bound to fail unless some structure is identified in the search space. Exponential 
speedup in many problems is achieved by exploiting some underlying property of the 
search space, for example, Shor’s Factorization Algorithm5, Deutsch and Jozsa’s 
algorithm6, Childs et. al.7 random walk algorithm. 

Any search algorithm to solve Approximate Traveling Salesman Problem8 
(Approximate TSP) is bound to fail unless it uses some additional information about 
the search space.  The best known classical algorithms for Euclidean Approximate 
TSP are Christofides’ algorithm9 and PTAS10. Farhi et. al.11,12 proposed a quantum 
optimization technique for Satisfiability problem using adiabatic evolution, but this 
method is not able to guarantee bounded error in polynomial time. Hogg et. al.13, ,14 15 
have proposed a quantum optimization technique using mixing operators. They have 
simulated it for Satisfiability Problem and Approximate TSP. The method performs 
well on average, but a bounded error in polynomial time cannot be guaranteed by this 
algorithm. Hogg et. al.  also propose an encoding that introduces states which do not 
correspond to any permutation. So, efficient representation of TSP is another issue 
that needs to be addressed. 

We propose a new encoding scheme for permutations which can be 
recursively generated. Using this representation scheme and assuming a Gaussian 
distribution on the tour lengths we present a BQP algorithm to solve Approximate 
TSP (Euclidian). We propose another algorithm to solve Approximate TSP using an 
oracle which answers queries about tour-length distribution.  This algorithm gives 
correct answers with high probability but is not in BQP.  However, this algorithm has 
the advantage that it does not assume any distribution on the tour lengths.   
 
Encoding Scheme for TSP—Given a graph on  vertices, every permutation of the set 
{1,2,…,n} defines a possible Hamiltonian cycle over the graph. So, if we have an 
entanglement of all possible permutations, information about whether a permutation 
defines a Hamiltonian cycle over the graph or not can be associated with it.  If a 

n



permutation represents a valid Hamiltonian cycle then we associate its tour length 
with the permutation.  We establish a bijection between the set of all permutations of 
{ }1 2 … n, , ,  and the set 1 2{( , ,..., ) |1 1 }n ia a a a i i i n≤ ≤ ∀ ≤ ≤ , which we will call the 
encoding set.  We give an inductive definition of this mapping function.  For the base 
case of , the function maps 1n = 1( 1a )=  to the permutation 1.  For n>1, it maps 
(a1,a2,…,an) in the following manner:   

1. From the elements ( )1 2 1na a … a −, , , , create the corresponding permutation of the 
set {1,2,…,n-1}.   

2. Insert  between the (an n-1)-th and an-th elements of the previous permutation 
(for  we insert in the beginning and for 1na = na n=  we insert it at the end).   

A simple  classical algorithm can be designed which implements this mapping. 
So, there exists a quantum algorithm to implement this mapping in polynomial time 
(using synchronization lemma

2O n⎛ ⎞
⎜ ⎟
⎝ ⎠

16).   
Note that if the i-th elements differ in two encodings then  is inserted at 

different positions and subsequent permutations which are generated are different. 
Therefore, this function is one-one. Moreover, size of the range and domain are equal 
( ). Thus, the function is a bijection and it suffices to obtain an entanglement of all 
elements in the encoding set.  

i
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Circuit to generate entanglement of all Permutations’ encodings—In order to 
generate entanglement of all possible encodings, we use  sets of registers n 1 nR …R,  to 
store information related to the entries ( )1 na … a, , . The -th register (i iR ) has  
qubits.  

1i +

i jR ,  represents the -th qubit of i -th register. At any given time, exactly one 
of the qubits in a register is in state 

j

1  and rest are in state 0 .  If 1i jR , =  and other 
qubits in -th register are in i 0  state, then we write 1iR j= −  (this means that 

). Our initial state is:  1ia j= −
( )

1 1 0 ... 0
n t−

Φ =      (base condition of the function) 

After t  iterations we will have the state (ignoring the normalization constant):   
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We apply the gate Gt+1 to obtain 1t+Φ  from tΦ . Gate Gt+1 can be described by: 
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where 1t jR + ,¬  represents complement of 1t jR + , .  1 0tR , =  implies that the values of  
have been set and 

ta

1 1 1tR + , =  implies that values of 1ta +  are not yet decided.  So, this 



step changes 1tR +  from 0  to the state 
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∑  in the ( 1)-tht +  iteration.  At the end 

of  iterations, we obtain the state representing the entanglement of all possible 
permutation encodings:   
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We modify the previous set of gates G to obtain gates which result in a final 

wave where result in a final wave where the probability of observing a particular 
permutation is proportional to .  The G gates transformed a 
permutation of t  points into an equal superposition of all possible permutations 
resulting from inserting the (t+1)-th point.  Given a permutation of  points, we know 
the exact increment in each tour due to the insertion of the (t+1)-th point at each of 

 possible positions (in all cases the length increases because the space is 
Euclidean).  So, we can redistribute the probabilities in the resulting  states such 
that they are proportional to .  These gates, after  iterations, result in a 
superposition of the encoding set, such that the probability of observing a particular 
encoding is proportional to . So, we obtain the wave: 

-tour length ,α α >1

t

1t +
1t +

incrementα − n

-tour lengthα length

is a permutation

a τ

τ

τ−∑ .   

 
Algorithm for solving Approximate TSP assuming a distribution—Given a graph, with 
a Euclidean norm, we scale it to fit within the smallest axis parallel square. Since 
there is no smaller square which can contain the graph completely, there must be at 
least two vertices on opposite sides of the square. We now scale the graph such that 
this square is a unit square.  Observe the following two properties for such graphs in 
unit squares: 

1. Tour lengths are : Maximum edge length in a unit square is ( )O n 2≤ , so the 

maximum tour-length that is possible in a normalized graph is 2n≤ .  This 
bound is tight and nothing better can be obtained (consider  points in a 
unit square with all vertices lying on one vertex of the square and all even 
vertices lying on the diagonally opposite vertex of the square.  Then any tour 
which alternately chooses an odd numbered and even numbered vertex is of 
length 

2n = k

2n ). 

2. Tour lengths are : Without loss of generality, assume that the two 
vertices which lie on opposite sides of the square are on edges which are 
parallel to the X-axis.  Consider any tour, and project its edges on the Y-axis.  
Edge lengths are greater than their projections, so length of any tour is greater 
than its projection on the Y-axis.  The projected tour has length 2, s all tours 
have tour length .  One can also verify that that this bound is tight 
(consider n points lying on a straight line parallel to the Y-axis and the X-
coordinates of the vertices of a tour form a bitonic sequence, then it has length 
2). 

(1)Ω

2≥

 
Consider a fully connected Euclidean TSP instance. We assume that the tour-



length distribution is Gaussian with the hump of the distribution lying between the 
minimum and maximum tour-lengths. For this TSP instance we prepare the wave  

length

is a permutation

τ
α

τ

α τ−Ψ = ∑  

Given an ε  close to 0, we would like to choose α  such that the probability of 
observing a tour with tour-length (by reading αΨ ) within (1 )ε+  of optimal tour-
length is greater than a non-zero constant. Assume is a Gaussian centered at 
some point in the range .  

( )g x

min maxx x⎡ ⎤
⎥⎦⎢⎣ , minx  is minimum tour-length and maxx  is 

maximum tour length. α  is a suitable parameter to be decided in the prepared wave. 
The probability of observing a tour with tour-length at most ( )1 ε+  times the optimal 
tour length is a function of α  and could be expressed as:  

(1 )
( )

( )

min

min
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min

x x

x
x x

x

g x dx

g x dx

ε
α

σ
α

+ −

−
=
∫
∫

 

We will make two assumptions regarding the nature of σ (the variance of the 
Gaussian). We will assume that σ  grows slower than a polynomial in  and 1n σ/  
grows slower than a polynomial in . Now, if we substitute a new variable for n x σ/ ,  
then we get the following properties in the new coordinate system:   

1. '( )p nσ ≤  eventually: So 2
'( ) ( )min minx x

p n p n
≥ ⇒ ≥

1  in new coordinate 

system.  

2. 1 '( )q n
σ
≤  eventually: So 2 '( ) ( )max maxx q n x q n≤ ⇒ ≤  in new coordinate 

system.   
Henceforth, we will assume that 1σ =  and prove our results with the above 
constraints. 

Now, observe that , where (ln ) 2x a xe eα − − −= = kx 02 lnk a= > .  The function 
that we intend to integrate becomes 

22kx xe e− − 2 ( )k x ke e− +=
2

. Multiplying by xα−  gives 
another Gaussian with center shifted to the left by . As 0k > α  varies, k  varies with 
it and the resulting set of functions is the set of all Gaussians shifted left from the 
original one. Now, we reduce the problem to analyzing the following function:  
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We are justified in doing so, because  serves to shift the center of  to the left 
by . This new center is taken as 0  and 

2kxe− ( )g x
k minx  goes to minx k−  in the new co-ordinate 

frame, which is taken as the variable  to account for variable  in the original 
problem. 

x k

Now, we set , i.e. we choose  such that the center of the shifted 
Gaussian is at 

0x = k
minx  of the original problem.  So, the shift is ( )( )O q n .  Therefore, 

( )( )2 O q nke eα = = . We recall the two inequalities 1 ( )minx p n≥ /  and ( )maxx q n≤  (where  
 and  are fixed polynomials).  Now, we see: ( )p n ( )q n
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Algorithm 1:   BQP algorithm for Approximate TSP (Euclidian) assuming Gaussian 
distribution on the tour-lengths 

1. Input a graph over  vertices and n ε   
2. Set ( )( )O q neα = , and prepare αΨ   
3. Read the wave and find out tour-length of the observed tour  
4. Repeat Step  and  2 3 ( )2

2
( )p nO
ε

 times  

5. Return the tour with minimum tour-length    

 
Prepare the wave αΨ  with ( )( )O q nα =  (as described in last section) and 

read it to find a tour.  If we repeat this procedure ( )2

2
( ) ( )p n r nO
ε

 times (  is a 

polynomial in n ) with 

( )r n

α  set as , then the probability that we do not get any 
tour in 

( ( ))O q ne
ε  neighborhood of the optimal tour-length in 

2

2
( ) ( )p n r n
ε

γ  repetitions of the 

experiment is: 

2( ) ( )
22

( )
21

( )

p n r n

r ne
p n

ε
γ

γε −⎛ ⎞
− <

⎝ ⎠
⎜ ⎟ . 

Therefore, we get a tour in an ε  neighborhood of the optimal tour with a 

probability greater than ( )
11 r neγ− .  Hence, in time which is polynomial in  and n 1

ε
 we 

get a tour which within (1 )ε+ times the optimal tour with very high probability.  

Oracle Algorithm and implementation—In the previous section, the assumption that 
the tours of a randomly generated Euclidean TSP instance in a unit square have a 
Gaussian distribution helped us to solve the problem efficiently.  Now, we consider 
the question of whether we can solve TSP efficiently if we have an oracle that can 
give us information about the possible distribution of tour lengths in a particular TSP 
instance.  Assuming an oracle exists that can tell whether there are any tours with 
lengths in the range [a,b) we give an efficient algorithm to solve Approximate TSP.  

Assume that we have an equal superposition of all possible permutation of the 
set { }{1 2 }… n, , , .  We know that given a permutation it is possible for a classical Turing 
Machine to verify in polynomial time whether that permutation is valid and has a tour 
length in the range [  i.e., the tour length is actually in the range [ ))a b, a b δ, + . So, 
there exists a quantum Turing Machine which runs in polynomial time and solves this 
problem.  We dovetail this machine and the circuit that produces an equal 



superposition of all permutations. This composite machine 1M  puts a validity qubit in 
state 1  if it is a valid tour with desired tour length, otherwise in state 0 . We create 

another machine 2M  which puts its qubit in the state 
0 1

2
+

 if it is a valid tour with 

desired tour length else puts it in the state 
0 1

2
−

.  We now consider the machine 

M  as described in the following algorithm:   

Algorithm 2:   PP oracle realization 

1. Create two independent equal superpositions of all possible permutations.  
2. Apply 1M  to the first wave and apply 2M  to the second wave.  
3. Read the two validity bits of these machines using the measurement 

operators{ }0 0 1 1, . Allow other qubits to decohere.  
4. If both are  return 0 false  else tr .    ue

 

Assume that there are  valid tours out of a total of m N n= !  tours.  Probability 

that both qubits on reading give 0  is ( )
2

1

21
m m
N Nm

N

⎛ ⎞
⎜
⎝

− −
− ×

⎟
⎠ . If there are no valid tours, 

then M  returns false  with probability 1
2  else returns  with probability true 1

2> . 
Here with high probability the answer given by M  is correct, but this probability can 
not be directly amplified as the gap between the probabilities (when  and ) 
decreases faster than inverse of any polynomial in n . So, this oracle is in the quantum 
counterpart of classical PP.  

0m = 1m =

We divide the range [2 2 ]n,  into ε  size ranges and number them serially 

from 1 to 2 2n
ε

⎡ −
⎢⎣ ⎦

⎤
⎥ .  We search linearly with δ ε=  on these ranges and try to find 

out the first range that has a valid tour in it.  Let  be the first range which has a valid 
tour such that its tour-length is in its range.  We start with an equal superposition of 
all permutations.  We dovetail a machine that finds the range to which a tour length 
belongs.  This results in an equal superposition of all permutations and its 
corresponding range number in a separate register. Then as a final step, we project the 

-th range and the decohered bits of the wave give us a permutation. 

0i

0i

Since no bin with index less than  has a tour, the optimal tour also lies in the 
-th bin. The tour observed in the previous algorithm has length at most 

0i

0i 2ε δ ε+ =  
greater than the optimal tour. We know that every tour has tour length greater than 2 . 
So, we get the result that the obtained tour’s length is less than ( )1 ε+  times the 
optimal tour-length. So, the obtained tour is an ( )1 ε+  approximation of the optimal 
tour.   

Each iteration uses a call to the oracle and has ( )1O  time requirement and 

there are ( )nO ε  iterations. So, we get an algorithm in the class , where X is the 
class in which oracle lies. Our algorithm gives correct answers with high probability, 

XP



however, a bounded error in probability cannot be guaranteed in polynomial time.  
When interpreted in classical complexity theory, the result is in lines of Toda’s 
theorem, but an interesting fact is that we can try to use more than  different bases 

(here we used 

2

{ }0 , 1  and 
0 1 0 1

,
2 2

⎧ + − ⎫
⎨
⎩ ⎭

⎬  bases sets in the oracle). This may 

not be possible in the standard Quantum Turing Machine Model, but there may be a 
bounded error algorithm in polynomial time for other quantum computation models.    

Algorithm 3:   General Algorithm to solve TSP 

1. Divide the range [2 2 ]n,  into ranges of size ε  and number them from 1 to 
2 2n
ε
−⎡ ⎤⎣ ⎦ .  

2. Set δ ε=   
3. Sequentially for each range from 1 to 2 2

2
n
ε
−⎡ ⎤⎣ ⎦  query the oracle with its search 

range.  
4. If i  is the first index for which oracle returns  then set .  true 0i i=

5. Create the wave 
is a permutation

#
τ

τ τ∑ , #τ  is the range number in which τ ’s 

tour-length lies.  
6. Project the qubits storing range information on 0 0i i  and let the qubits 

storing the tour-length information decohere.  
7. Return the τ  obtained in the qubits storing the permutation information.    

 
Conclusion—To the best of our knowledge, there is no quantum or classical algorithm 
which guarantees bounded error performance in polynomial time for any generic class 
of Traveling Salesman Problem. The Letter shows that if we assume a Gaussian 
distribution on the tour-lengths of all possible Hamiltonian cycles, then we can solve 
Approximate TSP in BQP resource bounds. Exact distribution of tour lengths may not 
be known. Oracle algorithm presents a method where we use an oracle to answer 
simple queries about Hamiltonian cycles’ properties. We present a PP algorithm to 
realize an oracle which provides sufficient information to help solve Approximate 
TSP. Although this means that the algorithm does not guarantee bounded error in 
polynomial time, but it gives correct answer with high probability. 

The results presented here can be considered amongst the few optimistic 
results on TSP. The methodology presented here provides a general framework within 
which one can use better oracles to obtain performance enhancement. There are a 
couple of evident extensions of the work presented in this Letter. We can analyze the 
effect of using multiple bases instead of two bases used in the oracle circuit presented 
in this Letter. Otherwise one can study oracle realizations in other models of quantum 
computations. If there are other models of quantum computation in which we can 
efficiently solve Approximate TSP with bounded error, then NP problems could be 
efficiently solved in those models of quantum computation.  
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